| | AAV Serotype | Transgene | Clinical Phase | Route of
Administration | Clinical Trial
Identifier | Successes | Limitations | References | |---|--|--|--|---|--|--|---|------------| | | | | | | Skeletal | Muscle | | | | LPL Deficiency | AAV1 | LPL | Phase I/II/III | Intramuscular | NCT01109498 | decrease of median tryglyceride levels seen in all patients | drop in triglyceride levels was transient, anti-AAV capsid-
specific T cells were detected in half of subjects | 1, 2, 3 | | | | | | | NCT00891306 | significant reduction in mean total plasma triglyceride levels;
improved postprandial chylomicron metabolism | 1/5 patients did not have decreased triglyceride levels; plasma
glucose and insulin levels did not change | | | Alpha I Anti-trypsin Deficiency | AAV2 | α1 antrypsin | Phase I/II | Intramuscular | NCT00377416 | Phase I: vector DNA sequences detected in the blood of most patients receiving mid to high doses; one patient exhibited low- | Phase I: transgene expression was below therapeutic levels in
most patients, anti-AAV2 capsid antibodies were present and | 4,5 | | | AAV1 | | | | NCT00430768 | level expression of AAT; Phase II: AAT expression oin serum
was dose dependent, peaked on day 30, and
persisted for at least 90 days | rose after vector injection; Phase II: transgene expression was
below therapeutic levels | | | Duchenne Muscular Dystrophy | AAV1/AAV2 chimera | Microdystrophin | Phase I | Intramuscular | NCT00428935 | first demonstration of safety of an engineered AAV vector; no
cellular immune response was mounted against capsid | weak or undetectable transgene levels in biopsied muscle tissue
1.5-3 months post-administration | 6 | | Limb-Girdle Muscular Dystrophy | AAVI | α-sarcoglycan | Phase I | Intramuscular | NCT00494195 | persistent α-sarcoglycan gene expression for six months in most
subjects, increase in muscle fiber size,
and restoration of the full sarcoglycan complex | one patient had early rise in neutralizing
antibody titers and AAV capsid-specific T cells; | 7, 8 | | | | | | | Cardiac | | | | | Severe Heart Failure | AAV1 | SERCA2a | Phase I/II | Coronary Artery
Infusion | NCT00454818 | Phase I: decrease in symptoms, functional status, biomarker
presence, and left ventricular function; Phase II: significant
increases in the time to clinical events, decreased frequency of
cardiovascular events, and decreased mean duration of
cardiovascular hospitalizations over 12 months post-
administration | Phase I: 2/9 patients showed no improvement (although pre-
exisiting anti-AAV antibodies were detected); individual patients
did not show improvements across all parameters; Phase II:
improvements in all primary end point success criteria was seen
only in highest dose cohort | 19, 20 | | Cideciyan, A. V et al. Human RPE65 ;
Maguire, A. & Simondil, F. Safety and
Bainbridge, J. W. B. et al. Effect of ge
Maguire, A. M. et al. Age-dependent et
Jacobson, S. G. et al. Cene therapy for
MacLaren, R. E. et al. Retinal gene th
Manno, C. S. et al. Ad-wediated face
Manno, C. S. et al. Successful transdu
Nathwani, A. C. et al. Adenovirus-Ass | gene therapy for Leber cong
de efficacy of gene transfer fit
ne therapy on visual functio
effects of RPE65 gene therapy
releber congenital amaurosis
erapy in patients with choro-
tor IX gene transfer to skelet
ction of liver in hemophilia
occiated Virus Vector-Media | enital amaurosis: persi
or Leber's congenital a
ny for Leber's congenit
oy for Leber's congenit
caused by RPE65 mut
ideremia: initial findin,
al muscle in patients w
by AAV-Factor IX and
ted Gene Transfer in I
ation of gene therapy i | stence of early visual imaurosis. N. Engl. J. J. I amaurosis. N. Engl. J. J. Ial amaurosis. N. Engl. J. Ial amaurosis: a phase ations: safety and effiges from a phase 1/2 cli with severe hemophilia B. N. Engl n cardiac disease (CU | mprovements and safety
Med. 358, 2240–2248 (2t
Med. 358, 2231–2239)
I dose-escalation trial. L
acey in 15 children and a
nical trial. Lancet 6736,
B. Blood 101, 2963–72
y the host immune respo
J. Med. 365, 2357–236:
PID Trial), a first-in-hum | r at 1 year. Hum. Gene'
1008).
(2008).
ancet 374, 1597–605 (3
dults followed up to 3 y
2117–2120 (2014).
(2003).
mse. Nat. Med. 12, 342
5 (2011).
nan phase 1/2 clinical tr | 2009).
eears. Arch. Ophthalmol. 130, 9–24 (2012). | | |